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Supernova type la data and the cosmic microwave background of modified curvature at short
and large distances
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The SNla data, although inconclusive, when combined with other observations makes a strong case that our
universe is presently dominated by dark energy. We investigate the possibility that large distance modifications
of the curvature of the universe would perhaps offer an alternative explanation of the observation. Our calcu-
lations indicate that a universe made up of no dark energy but instead, with a modified curvature at large scales,
is not scale invariant; therefore quite likely it is ruled out by the CMB observations. The sensitivity of the CMB
spectrum is checked for the whole range of mode modifications of large or short distance physics. The
spectrum is robust against modifications of short-distance physics and the UV cutoff when the initial state is
the adiabatic vacuum, and the inflationary background space is de Sitter space.
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I. INTRODUCTION be found in[4—6]. Then, the modified propagation of wave-
lengths of the same scale as the background curvature devia-
Based on the theoretical cosmological models of inflationfion scale can be attributed to a nonlinear dispersed fre-
the interpretation of the current astrophysical observationguency of the field at those wavelengths, for as long as the
such as the Supernova type (BNIa) data[1] suggests that generalized mass squared,(7)® in the field equation, re-
our universe contains a large amount of dark eng&jy mains the same. This equivalence noticei7his very use-
However, alternative models, free of dark energy, whichful for galculatlng 'ghe effects of modified large distance cur-
may fit in the allowed range of parameters suggested by op/@ture in observations. _ _
servation, are not excluded. In this paper we investigate Our model consists of &-parameterfamily of nonlinear
claims to a possibly different interpretation of the SNia datadispersion relations for the generalized frequency of the
for these alternative cosmological models: a Friedmannfield, that take account of the modification of the curvature at
Robertson-WalkefFRW) universe with no dark energy but Iarge distances. The family of dispersion functlons is nearly
with a modified curvature at large enough distances. Théinear for most of the range<<Mp, except a nonlinear de-
hope then is that either the Friedmann equation for the exviation centered around some low value of momegqyat is
pansion is modified, or that the light from SNla that reacheghis deviation bump that reflects the modifications of the gen-
us, while passing through these regions of different curvagralized frequency of the field at low momerdadue to the
ture, would be deflected, thereby “appearing” to have themodification of the curvature at large distandes'. The
same effect as an accelerating universe. dispersion function introduced in Sec. Il, although nonlinear
We examine metric perturbations in this modified back-in the trans-Planckian regime, it is nevertheless a smooth
ground geometrytraced back at the time of inflatipnMet-  function there, asymptotically approaching a constant value
ric perturbations are responsible for the generation of th@t time-infinity, thus having a well defined initial vacuum
large scale structure and temperature anisotropies of the costate[8]. The analytical calculation of the CMB spectrum is
mic microwave backgroundCMB). The inflaton field(in 4  based on the Bogoliubov coefficient method. The details of
dimensiony through the Friedmann equation, determinesthe exact solutions for this class of dispersion functifgis
the expansion ratél for the curvature of the background are given in the Appendix.
geometry. The metric perturbations satisfy a Klein-Gordon In Sec. Ill we check the sensitivity of CMB spectrum to
scalar field equation, minimally coupled to gravi§]. The the bump parameteks andB (scale location and amplitugle
scalar field has a generalized mass squélgtly)? that re-  that control the deviation behavior from a linear frequency
ceives the contributions of two terms: the field frequencydispersion at low values of the momenta, i.e., the allowed
squared and the field coupling to the background curvaturéange of curvature modifications at very large or very short
term. The coupling of the field to the curvature results in adistances that may agree with observation. We WsBrAST
modified propagation at long wavelengths since the curvain Sec. lll to plot the spectrum, by replacing the standard
ture of the universe is modified at large distances compareprimordial power spectrung?(k) with that derived analyti-
to the intermediate scales. Examples of modified gravity camally in Sec. Il for the model considered. We comment and
summarize the results in Sec. IV. It is shown that the CMB
spectrum is sensitive only to the choice of the initial vacuum

*Email address: bastero@cibs.sns.it state and the departure from linearity in the low momenta

TEmail address: mersini@cibs.sns.it regime. However, for an adiabatic initial vacuum state, the

e thank A. Riotto for bringing this idea to our attention. CMB spectrum of a de Sitter expansion does not depend in

2see, however, Ref25] for constraints on models with spatial the details of nonlinearity in the trans-Planckian regime
variations of the vacuum energy density. [9-11,7,12,13
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FIG. 1. Shown is one of the members of the family of dispersion relatit(;)? as a function of{(a) QE=aZF[k]2 as a function of
the physical momenturx; (b) conformal timez. The variablex=k/kc has been shifted by 1 such that the regime of linear dispersion
relation corresponds to small positive values of momenta,xsel.

Il. THE MODEL " "

2 2 a 2,2 a
Qn(m)*=n"=—=a%k"™~ . ()
The generalized Friedmann-Lemaitre-Robertson-Walker
(FLRW) line element in the presence of scalar and tensor

perturbations, takes the forfa4] The dynamics of the scale factor is determined by the

evolution of the background inflaton field, with potential
V(¢), and the Friedmann equation. There are mechanisms
Q that may produce different scale factors by modifying gravity
Y . ~ij at large(e.g.[4—6]) or short distancefl1].The present large
8 +h(m.MQay +hi(7.n) n2 distance modification scales can be traced back in time and
would correspond to deviations in the primordial scale factor
i and spectrum. We can denote this “distance dependent”
dx'dxr, (D scale factor byA. The coupling of the field to this back-
ground curvature results in a modified propagation of the
field at long wavelengths. Therefore, modifications of the
V\{here7 is the conformal .time and(7) t_he scale factor. The i;ﬁli;a;(t)rrib%rtgg r:/oat; rgé)p g:sg]: :f:‘](la\é:?i:/S: f?é(;irgﬁt;ffles
dimensionless qu_antltyl is the comoving wave vector_, '€ Such that the generalized comoving frequency B3y, re-
lated to the physical vectdt by k=n/a(7). The function  \ains the same, in the following manner:
(h,h;) andhg,, represent thecalar and tensoperturbations

dsz=a2(77){—d772+

+hgw(7,n)Qj

respectively. A "
The power spectrum of the perturbations can be computed Qn(m)2=n2— " =n2, — a (4)
once we solve the equations in the scalar and tensor sector. A a

The equation for the metric perturbations corresponds to a
Klein-Gordon equation of a minimally coupled scalar field, n.¢; denotes the dispersed comoving frequency of the field
iy, in a time dependent backgrouhd due to absorbing the modification terms to the curvature,
A"l A. Therefore, the dispersion function for the generalized
frequency results from the modified curvature at very large
wn+Qo(7)?ua=0, (2 and very short distances. It deviates from linearity at small
momentunk and asymptotically approaches a constant value
in the trans-Planckian regime.
where the prime denotes derivative with respect to conformal The dispersion relation for the generalized comoving fre-

time 7, and the generalized comoving frequency is quencyQ(7) is simply’ [8]: (7)) =a(n)F[n/a(n)]. The
2-parameter family of dispersion functiorfs[ k] of our

model(see Fig. lis
3We refer the reader for the details of the procedure to R&f.
and related referenc¢s].
“Note that from here on we use the symbadhstead ofa(#) for SFrom here on, we absorb the teafVa of Eq. (4) into the defi-
the scale factor. nition of the dispersion functiof[k].
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F[K]?= (k2= k2)Vo(x,X0) + k2 Vy(x—Xo)+KZ, (5)
o e T e (1rel )
Vl(X_XO)__Bm' "

where the dimensionless wavevectokisk/ke, ke=Mp is
the cutoff scaleko<kc, (i.e. xg<<1) is the value at which

we deviate from linearity at low momentum, the deviation

amplitude is controlled by the paramet&rand the constant

PHSICAL REVIEW D 65 023502

WhenB=0, for Q"">0°" then it is clear from Eq(11)
that the spectrum of created particles is nearly thermal to
high accuracy,

2
=e

Ba

an

—47\C

(13

The functionl" (kq,B) represents thdeviation of the spec-
trum from thermal behavior due to the nonlinearities at low
momentum. Therefore, the amplitude of the power spectrum,
On(K), will be modified byI'(kq,B) due to the non-linear
dispersion function introduced at arourgk<1.

In de Sitter space, the Bogoliubov coefficients would not
depend ork except their dependence on the bump param-

parametek; <Kkc is the asymptotic value of the frequency in eters through the deviation functidi(ko,B). This function

the trans-Planckian regime&{«). C,E,B,x, are dimen-
sionless parameters.

As already discussed in Ref®-11], Eq. (2) represents
particle production in a time-dependent backgro{ibl17].
We will follow the method of Bogoliubov transformation to
calculate the spectrum. The frequeri@y(z)? (which is the
same as a “time-dependent mass squared” jegmes as-

ymptotically to constant values at late and early times. n3
Therefore the initial and final vacuum states are well defined.
At early times the wave function should behave as a plane

wave:

1 foin
—-iQ 7
Mn— 5 —o e n,
Ne

8)

represents the departure from thermality in the particle cre-
ation number| 3,2 and it confirms Hu's ide&18] that near
thermal radiance can be characterized by departure from ex-
ponential scaling. It is straightforward to derive the CMB
power spectrumP(n), analytically from(the exact solution

for) the Bogoliubov coefficients,,, 3, [13]

2

Mn
:|,8n+a'n|2-

P(M=-—|5

(14

2m2

The deviation of the spectrum from scale invariance in this
class of models depends on the parameters of large-distance
curvature modifications, namely: the scale of modified long
wavelength modess, ! and the deviation amplitud®.

The expression for the Bogoliubov coefficient and Eq.

But at late times one has a squeezed state due to the curvetB) indicate that: for a well-defined initial vacuum stéte,
background that mixes positive and negative frequencieshe spectrum is insensitive to the nonlinear dispersion rela-

The evolution of the mode function,, at late times fixes the
Bogoliubov coefficientsy,, and 8,,:

Bn

- an e*iﬂﬁmv+ eﬂﬂgut” (9)
N o te oout Tt
V200! J200!
with the normalization condition:
|an|2_|Bn|2:1- (10

In the above expressions);’ and Q°'' denote the
asymptotic values of),(#7) when »— ¥ .

Details of the exact solution for EQR) with the dispersed
frequency given by Eqg5)—(7) are given in the Appendix.
The final expression for the Bogoliubov coefficigg,|? is

sinf(27Q _)+T'(kq,B)
sinff(27 Q). ) —sinkf(270 )

| Bal?= (12)

where ), =Q,/n, and Q. = (Q°'=+0O")/2, and the devia-

tion functionI"(kq,B) that contains the departure from ther-

mality in the spectrum is

(12

I'(ky,B)= cosl’?(%MBeXO— 1) .

tion in the trans-Planckian regim@nodifications of short-
distance physigs The unusual CMB spectrum plotted in the
next section withcMBFAST, demonstrates that modifications
of the large scale curvature of the universe produce a tilt due
to the departure from scale-invariance, and therefore conflict
with the observed CMBR spectrum. In general the tilt is
enhanced for modifications at superhorizon scakgs=H )
because it is the low energy modes that dominate the spec-
trum in the Bogoliubov coefficient. Although departure from
scale invariance is smaller at the last scattering horizon scale,
H_s, the range of deviation parameters is constrained by the
amplitude of the first peak. The deviation introduced to the
spectral indexng from higher energy modegvavelengths
shorter than the last scattering horizkg>H,5) becomes
negligible because high energy modes do not contribute sig-
nificantly to the spectrum. However, the shorter wavelengths
would correspond to the intermediate FRW regime rather
than the large distance scales, a regime which is scrutinized
by direct observation.

Ill. CMB SPECTRUM

Recent Boomerang and MAXIMA-1 CMB experiments
[20,21] have, to high accuracy, constrained the cosmological

5The field is in an initial Bunch-Davies vacuum.
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000 : ' PO ' (1) (long-dashed ling (ko=10"° hMpc !, B=2)

() (dashedling (ky=0.05 hMpc?t, B=2)
4000
(IV) (dot-dashed ling (ko=5 hMpc !, B=2)

2000 (V) (dottedling: (ko=0.05 hMpc!, B=25).
All plots were normalized to the Cosmic Background Ex-
plorer (COBE). Shown for comparison is also plbtcorre-
sponding to the conventional CMB spectrum widh, =0.7.
As can be seen from the plots in Fig. 2, there are distinct
features of the CMB spectra corresponding to the dispersion
function in comparison to the standard spectrum obtained for
cold dark matter modelavith a cosmological constant(A)
CDM].
There is an overall tilt produced in the spectrum which
g 6 pre o e i S|gnqls departure frqm the scale invariance. Th|§ .'[I|'[ is a
| function of the amplitude and scale of the modification,
) ko,B, introduced in Sec. I[Eq. (11)], such that it increases
FIG. 2. The CMB spectrum corresponding to our model for ¢ |y values of the deviation momentum scijgand large
three different representative values of the deviation paramiegers deviation amplitudeB. Let us consider the 3 regimes into
and fixed deV|at_|on amplitudB=2, 1I-1V. Shown also is the case which the curvature modifications can be introduced:
of a larger amplitudd=2.5 at scal&k,~H, g (V). The CMB plots e
) : . (1) Modifications at superHubble scalek,&Hg). The
were obtained usingMBFAST and they were normalized to COBE. . . .
departure from scale invariance is the strongest because the
low energy modes dominate the spectriimin Fig. 2. Mod-
els predicting curvature modifications in regini® quite

1(+1)C/2r [uKT

2000

1000

parameters, derived from the family of inflationary adiabatic
models, to: total energy densifyo—0.90+0.15 and spec- likely are ruled out due to atrongly tiltedspectrum
tral index ng=0.99+0.09 at a 95% confidence levg22]. y gy P .

Th d ¢ . ith dark densi (2) Modifications in the distance range between the cur-
QAe:c(;J.rYr.ent ata favors a universe with dark energy densityen; horizonH, and last scattering horizon scaty s (Ho

s<ky<H,g). For this range, the tilt is less pronounced than in

h In Ithis pa_\rt, we gxrlﬁre the co_smol_ogsical ;?niquﬁﬂnges qjegime (1). The main constraint comes from the tilt and it
the alternative model that was given in Sedfig. 1). tightly limits the amplitude of deviation in the first peak. For

is the most difficult test of precision cosmology that thesemodifications around the last scattering horizon schie,

models should pass. Th_is model _contains ho dark e”eF%HLS the departure from scale invariance is vanishing,
tQA=O,hhowever;f_dzscrlbest a ufmverfr? wh|cth_ at fI?rr]geF(gs'herefore the constraints are relaxed. However, even in this
ances has a modiied curvature from the metric of the ase the parameter B is tightly constrained to deviation by

universe at intermediate scalle. In Fig. 2 we shqw the Cquzss than 10%, in order for the amplitude of the first paak
power spectra obtained for different representative values 9 be in the allowed range of 4500-55Q0K2 [20,21]. In

the deviation parameteks andB in the dispersion function Fig. 2 we show the CMB spectra for these tuned values of
Egs.(5)—(7). The conventional parameters that go in the in-k B for comparison we also plotted the CMB for a value of
put of CMBFAST are: (or,{2p,{2,€2,), which stand for Boz’ 2,.5, which is outside the allowed range.

total energy density, baryonic, C.Old dark ”.‘a“er and t_he cos- (3) Modifications at distances shorter than the last scatter-
mological constant energy density respectively; agd/hich ing horizon (,>H, o). As we approach higher energy
is the scalar spectral index. We modified the power spectrurg, o< e effgct o%sth.e modification in the tilt of the spec-

amplitudesy (k) in the POWERSFLATSUbroutine OEMBFAST, i suppressed, therefore the departure from the conven-

in order to contain the deviation from the thermal spectrumyjona| spectrum is vanishing. Nevertheless, these length

(for the exact Ca'CP'at'O”Z reported in Sed. IThe modified  gca1es do not correspond to large distances anymore, instead

perturbation amplitudedy(k) is expressed in terms of they are in the intermediate regime of FRW Universe. Thus

?& Ko, B, wheres}, is the unmodified amplitude of the scale- the possibility of curvature modifications at such scages

invariant power spectrumk, corresponds to the location |actic and intergalacticis ruled out by direct observation up

scale where the curvature is modified, and B measures thg very short distancedess than 1 mr Clearly, there is no

amplitude of deviation in the curvature at scale tilt or departure from the conventional CMB produced in the
The values of the conventlor'\all parameters were taken timit of modifications of very short distance physitgery

be (1,0.03, 0.97,Dfor all the deviation plotglI-V), but the high momenta,—, i.e., trans-Planckian regime

deviation parameters in the plots below in Fig. 2 are in re- The claim of the model was to “offer an alternative ex-

spective order: planation” to the SNla data, namely: either the conventional
Friedmann equation is modified or the light of the SNIa pass-
(I) (solidling: (kg=0, B=0, Q,=0.7) ing through regions of modified curvature would get de-
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flected, and therefore when received by us would appear asifounced for scale modifications corresponding to length
indicating an accelerating universe. Although this alternativescales less than or equal to the horizon of the last scattering
approach to the SNla data might be theoretically appealingsurface, and in this case, the main constraint comes from the
we conclude that the CMB data tightly constrain it and makemodifications to the amplitude of the first acoustic peak and
it unlikely to bear any resemblance to reality. The methodthe fact that curvature modifications in the intermediate FRW
used in this work can also be adopted to check if higheuniverse scales are under direct observation. It remains inter-
dimensional models that predict modified gravity at largeesting to answer why the only curvature modifications that
scales and modified equations for the perturbafi¢bst,6  for a small range ok, andB can reconcile with the conven-
satisfy the CMB constraints. tional CMB spectrum are allowed only around the last scat-
teringH, 5 scales.
The scale and amplitude of the deviations from the con-
IV. SUMMARY ventional spectrum are severely constrained from the ob-
In this work we investigated claims that a modified large-S€rveéd CMB spectrum to be within 10% of the scale and

distance curvature may offer an alternative explanation foRMPplitude of the first peak. Although it is counterintuitive,

the SNla data. To check these claims, we studied the sensiince large distance would correspond to low energy theo-
tivity of CMB spectrum to the whole range of modessR €S, our results indicate that any modifications in the large
<, when short and large distance regimes are modified. scale curvature of the universe are tightly constrained from

In [7] it was noticed that a modified curvature of the uni- CMB data to a very small range of deviations from the cur-
verse at large distancévhen traced back at the time of vature of the intermediate FRW universe. Perhaps there is a

inflatiorf) gives rise to a dispersed frequency for the cosmic?atural way that would explain such a universe with an FRW
perturbations. The field is minimally coupled to the curvatureSPacetime at intermediate and very large distances but with
thus its propagation feels the modifications in the backSmall curvature deviations aroutit| s, without the need to

ground geometry. We adopted the method of IR&fin order appeal to fine-tuning. But if not, then theoretical posmologi—
to find out the effects of curvature deviations on the currenf@ models would have to account for the negative pressure
astrophysical observables. dark energy of the universe.

The role of a modified curvature of the universe at large 1N€ analysis of the sensitivity of the CMB spectrum for
distances on the inflationary metric perturbations was anad'€ Whole range of modes in a de Sitter background space,
lytically described by a family of dispersion relations. The with modifications in the short and large distance physics,

modification modulates the generalized frequencies of th&€Veals the spectrum is insensitive to the detailsstudrt-
inflationary perturbation modes at small values of the mo-distance physics and the cutoff scale (khe trans-Planckian

mentak by departing from linearity around some certain '€9ime only for aninitial adiabatic vacuum statehe scale-
small momentd=k, (ky<Mp) with a deviation amplitude nvariance of the spectrum and the amplitude of the first
B. The nonlinear feature of the dispersion relations, at smafRcoustic pealare very sensitive to modifications of large
momentak, and in the trans-Planckian regime, tracks thedistance physicglow momentum modes the spectrum is
curvature deviations at large and short distances, from th@!SO highly sensitive to the choice of the initial conditidns
conventional FRW universe of intermediate scales. One of? OUr class of dispersion models, the initial vacuum state is
the parameterské<k?2), in this class of dispersion functions we_ll-o:;afl;;ed smcel the baé:kgr%ugd)n(n) ] goelsgaS}I/_rrr:p-
was constrained in order to satisfy the Starobinsky bound fopotically flat at early t!mes{ unch-avis \_/a<_:uur|j ].)‘ €
negligible backreactiofil2]. CMB spectrum for this class of models is indeed insensitive
The analytical expression for the CMBR spectr(@ec to short distance modifications, as it can be checked by tak-
I1), as well as thecMBFAST plots of this class of models, ing the limit \_/vhen _Iarge scale modificati(_)n parameﬂgst .
go to zero, in which case the conventional scale-invariant

deviate from theblack body scale invariant spectrunihe X .
deviation function"(ko,B), given in Sec. Il and the Appen- spectrum is recovered. Therefore all the features observed in
0= X ig. 2 are due to large-scale curvature modifications only.

dix, which measures departure from the scale-invariant speé:-
trum (deviation from thermality in the the Bogoliubov coef-

ficient), depends on two free parameters, the skglend the ACKNOWLEDGMENTS
amplitude of the curvature modificatioBs The tilt produced
in the spectrum due tb'(kq,B) is present for all modifica- We are very grateful to S. Dodelson for his help with

tion scaleskoy<M, (these values of the physical momenta CMBFAST. We want to thank A. Riotto, R. Kolb, L. Parker, A.
correspond to the time of inflatipnThe tilt is less pro- Kempf, P. Frampton, G. Siegl, and I. Kogan for beneficial

"These models naturally modify the curvature around horizon and °It has been argued by many auth§¥s12,1( that the adiabatic
Planck length scales due to the higher dimensional gravity effectsacuum is the right choice for the initial conditions. Even for the
that switch on at very large or very short distances, but neverthelessame dispersion model, a different choice for the initial vacuum
with contributions from higher graviton excitations suppre423j. state will clearly result in a different particle spectrum, therefore

81t should be noted that in the case of higher dimensional multi-one has to be careful to distinguish if the features observed in the
gravity [4—6,23, it is not clear how the metric perturbation equa- CMB spectrum are signatures of new physics or only of the choice
tions are modified. of initial conditions.
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discussions and comments. We also would like to thank Prhe generalized frequendy,(7) goes to constant values at
Kanti for useful discussions in the early stages of this work.p— *, such that
We acknowledge Lloyd Knox for making themBFAST pro-

gram available. Qn(7) =, =Ny, (A8)
APPENDIX Qp(7)— 4"
The family of dispersion functions we used in Sec. Il to =n{+C(n*—nj), (A9)
model the deviation of the curvature at large and short dis- out
tances is given by with Qp'=/Cn whennsn;.

Under the change of variables— u=exp(nz), where
FIK]?=(k>—K)Vo(X,Xo) +k2V1(X—Xo) + ki, (A1)  d=1/(| nc|ke), the scalar wave equatid) for the modeu,,

becomes
Vol ) c + Ee’ (A2) 1
X,Xg) = ,
BT 1 eX (14 e)(1+ e X0y Tt 5wt V(W) | u0=0, (A10)
e* h
Vl(X_XO):_Bm’ (A3) wnere
. C E B
V(u)=D+

wherd® x=k/ke, Xg=ko/Ke: ko=Mp is the cutoff scale, UIFU) U D (700 u(ust )2’
ko<kc (Xp<<1) is the value at which we deviate from lin- (A11)
earity at low momentum, and the amplitude of the “bump/

deviation” is controlled byB (see Fig. 1 The parameter and

k,=n,/a(7) gives the asymptotic constant value at initial

time for the frequency in the limitk>kc), i.e., in the trans- C=C[(n?=n})/(nd)?], E=E[(n’—n))/(nd)?],
Planckian regime. On the other hand, in order to ensure the

linear behavior at very low values of the moment&1, we D=(n;/nd)?,

impose the following constraints for any value of the devia-

tion parameters, and B: B=B/d?,

Vo(x<1, Xg)=1, Vy(x<1, x9)"=0, (Ad)  andy,=exp(—ky/ko). Equation(A10) is exactly solvable in
terms of the Riemann generalized hypergeometric functions

Vi(x<1, X0)=0, (AS)  [24] with the constrainE=C/(1— y,),

where prime denotes derivative with respect to the physical 0 ® —19,
momentunk. The generalized comoving frequen@y,( ») is
then given by pexPl @ ¢ b oouf. (A12)
a* c* b*
Qn(n)?=a(n)*F[n/a(n)]?
As explained in Sec. Il, because of the asymptotic behav-

> o C ior of Q,(7), the initial and final vacua are well defined and
=(n“—n3) 14" the mode functionsu, behave as plane waves in the
€ asymptotic limits »— *. The exact solution which
Ee matches this asymptotic behavior is then given by
+(1+eX)(1+e<x—Xo>)l

w"(7)=N"(u)3(u+y,)P° ,F;/a+tb+c,atb+c* 1+a

2 B & +n2,  (A6)
N — |t N1,
(1+e(x xo))z _a*,_yi , (AL13)
0
with n=a(#n)k, a(n)=—|nc|/n during de Sitter inflation ,
[|mc|=1MH(nc)], and whereN'™" is a normalization constant, and
Kk n a=—i0n=—i\D, (A14)

X=—= (A7)

ke [mclke " .
b= S(1+ V1—-4Be %), (A15)

%The momentunk has been shifted b such thatQ,~x for
small positive valuesx<<1. c=—-iQ°ut=—j\yD+C. (A16)
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At late times the solution becomes a squeezed state by mix-

ing of positive and negative frequencies:
() =N (u)3(u+ y0)°

I'l+a—a*)I'(c*—c)
I'la+b+c*)I'(1—a*—b—

a+b

2F1

Y
+c,a*+b+c,1+c—c*,— UO}

. I'l+a—a*)I'(c*—c)
I'a+b+c)I'(1—a*—b—

oF.a+b

c*)

Yo
+c*,a*+b+c*,1+c*—c,—j

— —
—_—

a L nout Foout
out n —-iQ "y +iQ "y
Mn = et n '+ e n 7
T 20 V205"
(A7)

with | 3,2 being the Bogoliubov coefficient equal to the par-
ticle creation number per modeand{);=Q;/n. Using the

PHSICAL REVIEW D 65 023502

R Qouti an . i
and thedeviation functionl(k,,B) is
F(ko,é):cosﬁ-<g\/4éeX0— 1). (A20)

WhenB=0 andQ!">Q° then it is clear from Eq(A18)
that the spectrum of created particles is nearly thermal to
high accuracy,

2
=e

Ba

An

— 47T\56’ (A21)

as expected in de Sitter expansion. However, wBeh0,
vo# 0, at the mode crossing tinre=Ha(7), we can write

'(ko,B)

2 ‘ sinff27() _
Pri* Lgame| _ SINT2TR- (A22)

n I'(ko,B)

sintt27Q)

linear transformation properties of hypergeometric functionsthe expression in the squared bracket in the above equation

[24], we find that

2 sintP(2mQ)_)+T(ko,B)
sinf(270 ) +T(ko,B)

Bn

an

(A18)

where

contains the deviation from scale invariance. The deviation
I'(kg,B) is larger at low values of the momentum modifica-
tion scale xo<<1. On the other hand; (ky,B) is suppressed
around large scalegy=1. The same results about the scale
dependence of the deviation function were obtained by using
CMBFAST code (Fig. 2.
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