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Supernova type Ia data and the cosmic microwave background of modified curvature at short
and large distances
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The SNIa data, although inconclusive, when combined with other observations makes a strong case that our
universe is presently dominated by dark energy. We investigate the possibility that large distance modifications
of the curvature of the universe would perhaps offer an alternative explanation of the observation. Our calcu-
lations indicate that a universe made up of no dark energy but instead, with a modified curvature at large scales,
is not scale invariant; therefore quite likely it is ruled out by the CMB observations. The sensitivity of the CMB
spectrum is checked for the whole range of mode modifications of large or short distance physics. The
spectrum is robust against modifications of short-distance physics and the UV cutoff when the initial state is
the adiabatic vacuum, and the inflationary background space is de Sitter space.
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I. INTRODUCTION

Based on the theoretical cosmological models of inflati
the interpretation of the current astrophysical observati
such as the Supernova type Ia~SNIa! data@1# suggests tha
our universe contains a large amount of dark energy@2#.

However, alternative models, free of dark energy, wh
may fit in the allowed range of parameters suggested by
servation, are not excluded. In this paper we investig
claims to a possibly different interpretation of the SNIa da
for these alternative cosmological models: a Friedma
Robertson-Walker~FRW! universe with no dark energy bu
with a modified curvature at large enough distances. T
hope then is that either the Friedmann equation for the
pansion is modified, or that the light from SNIa that reach
us, while passing through these regions of different cur
ture, would be deflected, thereby ‘‘appearing’’ to have t
same effect as an accelerating universe.1,2

We examine metric perturbations in this modified bac
ground geometry~traced back at the time of inflation!. Met-
ric perturbations are responsible for the generation of
large scale structure and temperature anisotropies of the
mic microwave background~CMB!. The inflaton field~in 4
dimensions!, through the Friedmann equation, determin
the expansion rateH for the curvature of the backgroun
geometry. The metric perturbations satisfy a Klein-Gord
scalar field equation, minimally coupled to gravity@3#. The
scalar field has a generalized mass squaredVn(h)2 that re-
ceives the contributions of two terms: the field frequen
squared and the field coupling to the background curva
term. The coupling of the field to the curvature results in
modified propagation at long wavelengths since the cur
ture of the universe is modified at large distances compa
to the intermediate scales. Examples of modified gravity

*Email address: bastero@cibs.sns.it
†Email address: mersini@cibs.sns.it
1We thank A. Riotto for bringing this idea to our attention.
2See, however, Ref.@25# for constraints on models with spatia

variations of the vacuum energy density.
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be found in@4–6#. Then, the modified propagation of wave
lengths of the same scale as the background curvature d
tion scale can be attributed to a nonlinear dispersed
quency of the field at those wavelengths, for as long as
generalized mass squared,Vn(h)2 in the field equation, re-
mains the same. This equivalence noticed in@7# is very use-
ful for calculating the effects of modified large distance cu
vature in observations.

Our model consists of a~2-parameter! family of nonlinear
dispersion relations for the generalized frequency of
field, that take account of the modification of the curvature
large distances. The family of dispersion functions is nea
linear for most of the rangek,M P , except a nonlinear de
viation centered around some low value of momentak0. It is
this deviation bump that reflects the modifications of the g
eralized frequency of the field at low momentak0 due to the
modification of the curvature at large distancesk0

21. The
dispersion function introduced in Sec. II, although nonline
in the trans-Planckian regime, it is nevertheless a smo
function there, asymptotically approaching a constant va
at time-infinity, thus having a well defined initial vacuum
state@8#. The analytical calculation of the CMB spectrum
based on the Bogoliubov coefficient method. The details
the exact solutions for this class of dispersion functions@8#
are given in the Appendix.

In Sec. III we check the sensitivity of CMB spectrum
the bump parametersk0 andB ~scale location and amplitude!
that control the deviation behavior from a linear frequen
dispersion at low values of the momenta, i.e., the allow
range of curvature modifications at very large or very sh
distances that may agree with observation. We useCMBFAST

in Sec. III to plot the spectrum, by replacing the standa
primordial power spectrumdH

0 (k) with that derived analyti-
cally in Sec. II for the model considered. We comment a
summarize the results in Sec. IV. It is shown that the CM
spectrum is sensitive only to the choice of the initial vacuu
state and the departure from linearity in the low mome
regime. However, for an adiabatic initial vacuum state,
CMB spectrum of a de Sitter expansion does not depen
the details of nonlinearity in the trans-Planckian regim
@9–11,7,12,13#.
©2001 The American Physical Society02-1
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FIG. 1. Shown is one of the members of the family of dispersion relationsVn(h)2 as a function of:~a! Vk
25a2F@k#2 as a function of

the physical momentumx; ~b! conformal timeh. The variablex5k/kC has been shifted by 1 such that the regime of linear disper
relation corresponds to small positive values of momenta, i.e.,x!1.
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II. THE MODEL

The generalized Friedmann-Lemaitre-Robertson-Wa
~FLRW! line element in the presence of scalar and ten
perturbations, takes the form@14#

ds25a2~h!H 2dh21Fd i j 1h~h,n!Qd i j 1hl~h,n!
Qi j

n2

1hgw~h,n!Qi j GdxidxjJ , ~1!

whereh is the conformal time anda(h) the scale factor. The
dimensionless quantityn is the comoving wave vector, re
lated to the physical vectork by k5n/a(h). The function
(h,hl) andhgw represent thescalar and tensorperturbations
respectively.

The power spectrum of the perturbations can be compu
once we solve the equations in the scalar and tensor se
The equation for the metric perturbations corresponds t
Klein-Gordon equation of a minimally coupled scalar fie
mn , in a time dependent background3

mn91Vn~h!2mn50, ~2!

where the prime denotes derivative with respect to confor
time h, and the generalized comoving frequency is4

3We refer the reader for the details of the procedure to Refs.@15#
and related references@3#.

4Note that from here on we use the symbola instead ofa(h) for
the scale factor.
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Vn~h!25n22
a9

a
5a2k22

a9

a
. ~3!

The dynamics of the scale factor is determined by
evolution of the background inflaton fieldf, with potential
V(f), and the Friedmann equation. There are mechani
that may produce different scale factors by modifying grav
at large~e.g.@4–6#! or short distances@11#.The present large
distance modification scales can be traced back in time
would correspond to deviations in the primordial scale fac
and spectrum. We can denote this ‘‘distance depende
scale factor byA. The coupling of the field to this back
ground curvature results in a modified propagation of
field at long wavelengths. Therefore, modifications of t
scale factor or curvature (A) of the universe at large scale
can be attributed to a dispersed effective frequency (ne f f),
such that the generalized comoving frequency Eq.~3! re-
mains the same, in the following manner:

Vn~h!25n22
A 9

A 5ne f f
2 2

a9

a
. ~4!

ne f f denotes the dispersed comoving frequency of the fi
due to absorbing the modification terms to the curvatu
A9/A. Therefore, the dispersion function for the generaliz
frequency results from the modified curvature at very la
and very short distances. It deviates from linearity at sm
momentumk and asymptotically approaches a constant va
in the trans-Planckian regime.

The dispersion relation for the generalized comoving f
quencyVn(h) is simply5 @8#: Vn(h)5a(h)F@n/a(h)#. The
2-parameter family of dispersion functionsF@k# of our
model ~see Fig. 1! is

5From here on, we absorb the terma9/a of Eq. ~4! into the defi-
nition of the dispersion functionF@k#.
2-2
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F@k#25~k22k1
2!V0~x,x0!1k2 V1~x2x0!1k1

2 , ~5!

V0~x,x0!5
C

11ex
1

Eex

~11ex!~11e(x2x0)!
, ~6!

V1~x2x0!52B
ex

~11e(x2x0)!2
, ~7!

where the dimensionless wavevector isx5k/kC , kC5M P is
the cutoff scale,k0!kC , ~i.e. x0!1) is the value at which
we deviate from linearity at low momentum, the deviati
amplitude is controlled by the parameterB, and the constan
parameterk1,kC is the asymptotic value of the frequency
the trans-Planckian regime (k→`). C,E,B,x0 are dimen-
sionless parameters.

As already discussed in Refs.@9–11#, Eq. ~2! represents
particle production in a time-dependent background@16,17#.
We will follow the method of Bogoliubov transformation t
calculate the spectrum. The frequencyVn(h)2 ~which is the
same as a ‘‘time-dependent mass squared’’ term! goes as-
ymptotically to constant values at late and early tim
Therefore the initial and final vacuum states are well defin
At early times the wave function should behave as a pl
wave:

mn→h→2`

1

A2Vn
in

e2 iVn
inh. ~8!

But at late times one has a squeezed state due to the cu
background that mixes positive and negative frequenc
The evolution of the mode functionmn at late times fixes the
Bogoliubov coefficientsan andbn :

mn→h→1`

an

A2Vn
out

e2 iVn
outh1

bn

A2Vn
out

e1 iVn
outh ~9!

with the normalization condition:

uanu22ubnu251. ~10!

In the above expressions,Vn
in and Vn

out denote the
asymptotic values ofVn(h) whenh→7`.

Details of the exact solution for Eq.~2! with the dispersed
frequency given by Eqs.~5!–~7! are given in the Appendix
The final expression for the Bogoliubov coefficientubnu2 is

ubnu25
sinh2~2pV̂2!1G~k0 ,B!

sinh2~2pV̂1!2sinh2~2pV̂2!
, ~11!

where V̂ i5V i /n, and V̂65(V̂out6V̂ in)/2, and the devia-
tion functionG(k0 ,B) that contains the departure from the
mality in the spectrum is

G~k0 ,B!5cosh2S p

2
A4Be2x021D . ~12!
02350
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When B50, for V in.Vout, then it is clear from Eq.~11!
that the spectrum of created particles is nearly therma
high accuracy,

Ubn

an
U2

.e24pAC. ~13!

The functionG(k0 ,B) represents thedev iation of the spec-
trum from thermal behavior due to the nonlinearities at lo
momentum. Therefore, the amplitude of the power spectr
dH(k), will be modified byG(k0,B) due to the non-linear
dispersion function introduced at aroundx0,1.

In de Sitter space, the Bogoliubov coefficients would n
depend onk except their dependence on the bump para
eters through the deviation functionG(k0 ,B). This function
represents the departure from thermality in the particle c
ation number,ubnu2 and it confirms Hu’s idea@18# that near
thermal radiance can be characterized by departure from
ponential scaling. It is straightforward to derive the CM
power spectrum,P(n), analytically from~the exact solution
for! the Bogoliubov coefficientsan ,bn @13#

P~n!5
n3

2p2 Umn

a U2

.ubn1anu2. ~14!

The deviation of the spectrum from scale invariance in t
class of models depends on the parameters of large-dist
curvature modifications, namely: the scale of modified lo
wavelength modes,k0

21, and the deviation amplitudeB.
The expression for the Bogoliubov coefficient and E

~13! indicate that: for a well-defined initial vacuum state6

the spectrum is insensitive to the nonlinear dispersion r
tion in the trans-Planckian regime~modifications of short-
distance physics!. The unusual CMB spectrum plotted in th
next section withCMBFAST, demonstrates that modification
of the large scale curvature of the universe produce a tilt
to the departure from scale-invariance, and therefore con
with the observed CMBR spectrum. In general the tilt
enhanced for modifications at superhorizon scales (k0<H0)
because it is the low energy modes that dominate the s
trum in the Bogoliubov coefficient. Although departure fro
scale invariance is smaller at the last scattering horizon sc
HLS , the range of deviation parameters is constrained by
amplitude of the first peak. The deviation introduced to t
spectral index,ns from higher energy modes~wavelengths
shorter than the last scattering horizonk0.HLS) becomes
negligible because high energy modes do not contribute
nificantly to the spectrum. However, the shorter waveleng
would correspond to the intermediate FRW regime rat
than the large distance scales, a regime which is scrutin
by direct observation.

III. CMB SPECTRUM

Recent Boomerang and MAXIMA-1 CMB experimen
@20,21# have, to high accuracy, constrained the cosmolog

6The field is in an initial Bunch-Davies vacuum.
2-3
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parameters, derived from the family of inflationary adiaba
models, to: total energy densityV tot50.9060.15 and spec-
tral index ns50.9960.09 at a 95% confidence level@22#.
The current data favors a universe with dark energy den
VL50.7.

In this part, we explore the cosmological consequence
the alternative model that was given in Sec. II~Fig. 1!. CMB
is the most difficult test of precision cosmology that the
models should pass. This model contains no dark ene
VL50, however it describes a universe which at large d
tances has a modified curvature from the metric of the F
universe at intermediate scale. In Fig. 2 we show the C
power spectra obtained for different representative value
the deviation parametersk0 andB in the dispersion function
Eqs.~5!–~7!. The conventional parameters that go in the
put of CMBFAST are: (V tot ,Vb ,Vc ,VL), which stand for
total energy density, baryonic, cold dark matter and the c
mological constant energy density respectively; andns which
is the scalar spectral index. We modified the power spect
amplitudedH

0 (k) in thePOWERSFLATsubroutine ofCMBFAST,
in order to contain the deviation from the thermal spectr
~for the exact calculation reported in Sec. II!. The modified
perturbation amplitudedH

2 (k) is expressed in terms o
dH

0 ,k0 ,B, wheredH
0 is the unmodified amplitude of the scal

invariant power spectrum,k0 corresponds to the locatio
scale where the curvature is modified, and B measures
amplitude of deviation in the curvature at scalek0.

The values of the conventional parameters were take
be ~1,0.03, 0.97,0! for all the deviation plots~II–V !, but the
deviation parameters in the plots below in Fig. 2 are in
spective order:

~ I! ~solid line!: ~k050, B50, VL50.7!

FIG. 2. The CMB spectrum corresponding to our model
three different representative values of the deviation parameterk0

and fixed deviation amplitudeB52, II–IV. Shown also is the case
of a larger amplitudeB52.5 at scalek0'HLS ~V!. The CMB plots
were obtained usingCMBFAST and they were normalized to COBE
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~ II ! ~ long-dashed line!: ~k051026 hMpc21, B52!

~ III ! ~dashed line!: ~k050.05 hMpc21, B52!

~ IV ! ~dot-dashed line!: ~k055 hMpc21, B52!

~V! ~dotted line!: ~k050.05 hMpc21, B52.5!.

All plots were normalized to the Cosmic Background E
plorer ~COBE!. Shown for comparison is also plotI corre-
sponding to the conventional CMB spectrum withVL50.7.
As can be seen from the plots in Fig. 2, there are disti
features of the CMB spectra corresponding to the dispers
function in comparison to the standard spectrum obtained
cold dark matter models~with a cosmological constant! @(L)
CDM#.

There is an overall tilt produced in the spectrum whi
signals departure from the scale invariance. This tilt is
function of the amplitude and scale of the modificatio
k0 ,B, introduced in Sec. II@Eq. ~11!#, such that it increases
for low values of the deviation momentum scalek0 and large
deviation amplitudeB. Let us consider the 3 regimes int
which the curvature modifications can be introduced:

~1! Modifications at superHubble scales (k0,H0). The
departure from scale invariance is the strongest because
low energy modes dominate the spectrum~II ! in Fig. 2. Mod-
els predicting curvature modifications in regime~1! quite
likely are ruled out due to astrongly tiltedspectrum.

~2! Modifications in the distance range between the c
rent horizonH0 and last scattering horizon scaleHLS (H0
<k0<HLS). For this range, the tilt is less pronounced than
regime ~1!. The main constraint comes from the tilt and
tightly limits the amplitude of deviation in the first peak. Fo
modifications around the last scattering horizon scale,k0
'HLS the departure from scale invariance is vanishin
therefore the constraints are relaxed. However, even in
case the parameter B is tightly constrained to deviation
less than 10%, in order for the amplitude of the first peakA1
to be in the allowed range of 4500–5500mK2 @20,21#. In
Fig. 2 we show the CMB spectra for these tuned values
k0 ,B; for comparison we also plotted the CMB for a value
B52.5, which is outside the allowed range.

~3! Modifications at distances shorter than the last scat
ing horizon (k0.HLS). As we approach higher energ
modes, the effect of the modification in the tilt of the spe
trum is suppressed, therefore the departure from the con
tional spectrum is vanishing. Nevertheless, these len
scales do not correspond to large distances anymore, ins
they are in the intermediate regime of FRW Universe. Th
the possibility of curvature modifications at such scales~ga-
lactic and intergalactic! is ruled out by direct observation u
to very short distances~less than 1 mm!. Clearly, there is no
tilt or departure from the conventional CMB produced in t
limit of modifications of very short distance physics~very
high momentak0→`, i.e., trans-Planckian regime!.

The claim of the model was to ‘‘offer an alternative e
planation’’ to the SNIa data, namely: either the conventio
Friedmann equation is modified or the light of the SNIa pa
ing through regions of modified curvature would get d

r
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SUPERNOVA TYPE Ia DATA AND THE COSMIC . . . PHYSICAL REVIEW D 65 023502
flected, and therefore when received by us would appear
indicating an accelerating universe. Although this alternat
approach to the SNIa data might be theoretically appeal
we conclude that the CMB data tightly constrain it and ma
it unlikely to bear any resemblance to reality. The meth
used in this work can also be adopted to check if hig
dimensional models that predict modified gravity at lar
scales and modified equations for the perturbations7 @5,4,6#
satisfy the CMB constraints.

IV. SUMMARY

In this work we investigated claims that a modified larg
distance curvature may offer an alternative explanation
the SNIa data. To check these claims, we studied the se
tivity of CMB spectrum to the whole range of modes, 0<k
<`, when short and large distance regimes are modified

In @7# it was noticed that a modified curvature of the un
verse at large distance~when traced back at the time o
inflation8! gives rise to a dispersed frequency for the cosm
perturbations. The field is minimally coupled to the curvatu
thus its propagation feels the modifications in the ba
ground geometry. We adopted the method of Ref.@7# in order
to find out the effects of curvature deviations on the curr
astrophysical observables.

The role of a modified curvature of the universe at lar
distances on the inflationary metric perturbations was a
lytically described by a family of dispersion relations. Th
modification modulates the generalized frequencies of
inflationary perturbation modes at small values of the m
menta k by departing from linearity around some certa
small momentak5k0 (k0<M P) with a deviation amplitude
B. The nonlinear feature of the dispersion relations, at sm
momentak0 and in the trans-Planckian regime, tracks t
curvature deviations at large and short distances, from
conventional FRW universe of intermediate scales. One
the parameters (k1

2,kC
2 ), in this class of dispersion function

was constrained in order to satisfy the Starobinsky bound
negligible backreaction@12#.

The analytical expression for the CMBR spectrum~Sec.
II !, as well as theCMBFAST plots of this class of models
deviate from theblack body scale invariant spectrum. The
deviation functionG(k0 ,B), given in Sec. II and the Appen
dix, which measures departure from the scale-invariant sp
trum ~deviation from thermality in the the Bogoliubov coe
ficient!, depends on two free parameters, the scalek0 and the
amplitude of the curvature modificationsB. The tilt produced
in the spectrum due toG(k0 ,B) is present for all modifica-
tion scalesk0<M P ~these values of the physical momen
correspond to the time of inflation!. The tilt is less pro-

7These models naturally modify the curvature around horizon
Planck length scales due to the higher dimensional gravity eff
that switch on at very large or very short distances, but neverthe
with contributions from higher graviton excitations suppressed@23#.

8It should be noted that in the case of higher dimensional mu
gravity @4–6,23#, it is not clear how the metric perturbation equ
tions are modified.
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nounced for scale modifications corresponding to len
scales less than or equal to the horizon of the last scatte
surface, and in this case, the main constraint comes from
modifications to the amplitude of the first acoustic peak a
the fact that curvature modifications in the intermediate FR
universe scales are under direct observation. It remains in
esting to answer why the only curvature modifications t
for a small range ofk0 andB can reconcile with the conven
tional CMB spectrum are allowed only around the last sc
tering HLS scales.

The scale and amplitude of the deviations from the c
ventional spectrum are severely constrained from the
served CMB spectrum to be within 10% of the scale a
amplitude of the first peak. Although it is counterintuitiv
since large distance would correspond to low energy th
ries, our results indicate that any modifications in the la
scale curvature of the universe are tightly constrained fr
CMB data to a very small range of deviations from the c
vature of the intermediate FRW universe. Perhaps there
natural way that would explain such a universe with an FR
spacetime at intermediate and very large distances but
small curvature deviations aroundHLS , without the need to
appeal to fine-tuning. But if not, then theoretical cosmolo
cal models would have to account for the negative press
dark energy of the universe.

The analysis of the sensitivity of the CMB spectrum f
the whole range of modes in a de Sitter background sp
with modifications in the short and large distance physi
reveals the spectrum is insensitive to the details ofshort-
distance physics and the cutoff scale kC ~the trans-Planckian
regime! only for aninitial adiabatic vacuum state, the scale-
invariance of the spectrum and the amplitude of the fi
acoustic peakare very sensitive to modifications of larg
distance physics~low momentum modes!, the spectrum is
also highly sensitive to the choice of the initial condition.9

In our class of dispersion models, the initial vacuum state
well-defined since the background@Vn(h)2# goes asymp-
totically flat at early times~Bunch-Davis vacuum@19#!. The
CMB spectrum for this class of models is indeed insensit
to short distance modifications, as it can be checked by
ing the limit when large scale modification parametersk0 ,B
go to zero, in which case the conventional scale-invari
spectrum is recovered. Therefore all the features observe
Fig. 2 are due to large-scale curvature modifications only
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APPENDIX

The family of dispersion functions we used in Sec. II
model the deviation of the curvature at large and short
tances is given by

F@k#25~k22k1
2!V0~x,x0!1k2V1~x2x0!1k1

2 , ~A1!

V0~x,x0!5
C

11ex
1

Eex

~11ex!~11e(x2x0)!
, ~A2!

V1~x2x0!52B
ex

~11e(x2x0)!2
, ~A3!

where10 x5k/kC , x05k0 /kC ; kC5M P is the cutoff scale,
k0!kC (x0!1) is the value at which we deviate from lin
earity at low momentum, and the amplitude of the ‘‘bum
deviation’’ is controlled byB ~see Fig. 1!. The parameter
k15n1 /a(h) gives the asymptotic constant value at init
time for the frequency in the limit (k@kC), i.e., in the trans-
Planckian regime. On the other hand, in order to ensure
linear behavior at very low values of the momenta,x!1, we
impose the following constraints for any value of the dev
tion parametersx0 and B:

V0~x!1, x0!.1, V0~x!1, x0!9.0, ~A4!

V1~x!1, x0!.0, ~A5!

where prime denotes derivative with respect to the phys
momentumk. The generalized comoving frequencyVn(h) is
then given by

Vn~h!25a~h!2F@n/a~h!#2

5~n22n1
2!F C

11ex

1
Eex

~11ex!~11e(x2x0)!
G

2n2F B ex

~11e(x2x0)!2G1n1
2 , ~A6!

with n5a(h)k, a(h)52uhCu/h during de Sitter inflation
@ uhCu51/H(hC)#, and

x5
k

kC
52

n

uhCukC
h. ~A7!

10The momentumk has been shifted bykC such thatVn'x for
small positive values,x!1.
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The generalized frequencyVn(h) goes to constant values a
h→6`, such that

Vn~h!→h→2`Vn
in5n1 , ~A8!

Vn~h!→h→1`Vn
out

5An1
21C~n22n1

2!, ~A9!

with Vn
out.ACn whenn@n1.

Under the change of variablesh→u5exp(dnh), where
d51/(uhCukC), the scalar wave equation~2! for the modemn
becomes

F]u
21

1

u
]u1V~u!Gmn50, ~A10!

where

V~u!5D̂1
Ĉ

u~11u!
1

Ê

u~u11!~g01u!
2

B̂

u~u1g0!2
,

~A11!

and

Ĉ5C@~n22n1
2!/~nd!2#, Ê5E@~n22n1

2!/~nd!2#,

D̂5~n1 /nd!2,

B̂5B/d2,

andg05exp(2k0 /kC). Equation~A10! is exactly solvable in
terms of the Riemann generalized hypergeometric functi
@24# with the constraintÊ5Ĉ/(12g0),

mn}PS 0 ` 2g0

a c b u

a* c* b*
D . ~A12!

As explained in Sec. II, because of the asymptotic beh
ior of Vn(h), the initial and final vacua are well defined an
the mode functionsmn behave as plane waves in th
asymptotic limits h→7`. The exact solution which
matches this asymptotic behavior is then given by

m in~h!5Nin~u!a~u1g0!b
2F1Fa1b1c,a1b1c* ,11a

2a* ,2
u

g0
G , ~A13!

whereNin is a normalization constant, and

a52 i V̂ in52 iAD̂, ~A14!

b5
1

2
~11A124B̂e2x0!, ~A15!

c52 i V̂out52 iAD̂1Ĉ. ~A16!
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At late times the solution becomes a squeezed state by
ing of positive and negative frequencies:

mn
out~h!5Nout~u!a~u1g0!b

3S G~11a2a* !G~c* 2c!

G~a1b1c* !G~12a* 2b2c!
2F1Fa1b

1c,a* 1b1c,11c2c* ,2
g0

u G
1

G~11a2a* !G~c* 2c!

G~a1b1c!G~12a* 2b2c* !
2F1Fa1b

1c* ,a* 1b1c* ,11c* 2c,2
g0

u G D ,

mn
out→h→1`

an

A2Vn
out

e2 iVn
outh1

bn

A2Vn
out

e1 iVn
outh,

~A17!

with ubnu2 being the Bogoliubov coefficient equal to the pa
ticle creation number per moden and V̂ i5V i /n. Using the
linear transformation properties of hypergeometric functio
@24#, we find that

Ubn

an
U2

5
sinh2~2pV̂2!1G~k0 ,B̂!

sinh2~2pV̂1!1G~k0 ,B̂!
, ~A18!

where
y,

n

6

.
n

v
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V̂65
V̂out6V̂ in

2
, V̂~ i !5

V i

nb
, ~A19!

and thedeviation functionG(k0 ,B̂) is

G~k0 ,B̂!5cosh2S p

2
A4B̂e2x021D . ~A20!

WhenB50 andV in.Vout, then it is clear from Eq.~A18!
that the spectrum of created particles is nearly therma
high accuracy,

Ubn

an
U2

.e24pAC, ~A21!

as expected in de Sitter expansion. However, whenBÞ0,
g0Þ0, at the mode crossing timen5Ha(h), we can write

Ubn

an
U2

'e24pACF 11
G~k0 ,B!

sinh22pV̂2

11
G~k0 ,B!

sinh22pV̂1

G . ~A22!

The expression in the squared bracket in the above equa
contains the deviation from scale invariance. The deviat
G(k0 ,B) is larger at low values of the momentum modific
tion scale,x0!1. On the other hand,G(k0 ,B) is suppressed
around large scales,x0.1. The same results about the sca
dependence of the deviation function were obtained by us
CMBFAST code~Fig. 2!.
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